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Log-concavity and log-convexity
Definition of log-concavity and log-convexity

A continuous function f : (a, b)→ R+ is log-concave on (a, b) if for
any δ > 0 and µ such that [µ− δ, µ+ δ] ⊂ (a, b)

f (µ)2 ≥ f (µ+ δ)f (µ− δ). (1)

If inequality (1) is reversed f is log-convex.

Some properties of log-convexity and log-concavity:

Log-convexity is stronger then convexity
Log-convexity is additive
Log-convexity is not preserved by convolution
Log-concavity is weaker than concavity
Log-concavity is not additive
Log-concavity is preserved by convolution
Log-concavity and log-convexity are both preserved by binomial
convolution
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Discrete and Wright log-concavity
Wright log-concavity
f is Wright log-concave if for any δ > 0 and ε > 0:

f (µ+ ε)f (µ+ δ) ≥ f (µ+ δ + ε)f (µ)

m
µ→ f (µ+ δ)/f (µ) is non-increasing

(2)

For continuous functions Wright log-concativity=log-concavity

If (1) (or (2)) only holds for δ = 0, 1, 2, . . . the function f will be called
discrete log-concave (or discrete Wright log-concave). (2)⇒ (1)

Examples of discrete log-concavity: Newton’s inequalities for
elementary symmetric polynomials, Laguerre inequalities for derivatives
of entire functions, Alexandrov-Fenchel inequalities for mixed volumes,
log-concavity of combinatorial sequences, Turán inequalities for
orthogonal polynomials (for latest development see Szwarc, Berg,
Krasikov).
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General open problem
Under what conditions on the positive sequence {fk} and the numbers
a1, . . ., an, b1, . . ., bm the functions:

µ→
∞∑

k=0

fk
(a1 + µ)k · · · (an + µ)k

(b1 + µ)k · · · (bm + µ)k
,

µ→
∞∑

k=0

fk
Γ(a1 + µ+ k) · · · Γ(an + µ+ k)

Γ(b1 + µ+ k) · · · Γ(bm + µ+ k)

is [discrete, Wright] log-concave or log-convex?

Instead of rising factorial we can consider another binomial sequence of
polynomials or q-rising factorial, instead of Gamma function - another
explicit function. . .

Instead of log-convexity we can consider convexity with respect to
different means. . .

We can add (or subtract) µ to some parameters and ν to others and
thus consider multidimensional analogues. . .
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Some history: Bessel functions
Lommel’s (1870) formula

x2[J2
ν (x)− Jν+1(x)Jν−1(x)] =

∞∑
k=0

(2k + ν + 1)J2
2k+ν+1(x)

⇓
∆ν := J2

ν (x)− Jν+1(x)Jν−1(x) ≥ 0, x ∈ R, ν > −1.

Improvement by Szász (1950):

J2
ν (x)− Jν+1(x)Jν−1(x) >

1

ν + 1
J2
ν (x), x ∈ R, ν > 0.

Thiruvenkatachar and Nanjundiah (1951):

∆ν =
1

ν + 1
J2
ν (x) +

2

ν + 2
J2
ν+1(x) + 2ν

∞∑
k=2

J2
k+ν(x)

(ν + k − 1)(ν + k − 1)
.

Log-concavity of ν → Jν(x) on (−1,∞) and fixed x > 0 - Ismail and
Muldoon (1978). Extensions to higher order inequalities - Skovgaard
(1954), Karlin and Szegő (1960), Al-Salam (1961), Patrick (1973),
Baricz and Pogány (2011, including a survey).
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Some history: Modified Bessel functions

Thiruvenkatachar and Nanjundiah (1951), Amos (1974):

I 2
ν (x)− Iν+1(x)Iν−1(x) ≥ 0, x > 0, ν > −1

Essentially equivalent inequality

xI ′ν(x)/Iν(x) <
√

x2 + ν2

appeared in Gronwall (1932) for ν > 0 and later in Phillips and Malin
(1950) for integer ν.

Log-concavity of ν → Iν(x) on (−1,∞) and fixed x > 0 - Baricz (2010)
following the proof of Ismail and Muldoon (1978) for Jν .

Ismail and Muldoon (1978):

Kν+1(x)Kν−1(x)− K 2
ν (x) ≥ 0, x > 0, ν ∈ R

log-convexity of ν → Kν - Baricz (2010).
Dmitry Karp Log-convexity and log-concavity



Some history: Modified Bessel functions

Thiruvenkatachar and Nanjundiah (1951), Amos (1974):

I 2
ν (x)− Iν+1(x)Iν−1(x) ≥ 0, x > 0, ν > −1

Essentially equivalent inequality

xI ′ν(x)/Iν(x) <
√

x2 + ν2

appeared in Gronwall (1932) for ν > 0 and later in Phillips and Malin
(1950) for integer ν.

Log-concavity of ν → Iν(x) on (−1,∞) and fixed x > 0 - Baricz (2010)
following the proof of Ismail and Muldoon (1978) for Jν .

Ismail and Muldoon (1978):

Kν+1(x)Kν−1(x)− K 2
ν (x) ≥ 0, x > 0, ν ∈ R

log-convexity of ν → Kν - Baricz (2010).
Dmitry Karp Log-convexity and log-concavity



Some history: Modified Bessel functions

Thiruvenkatachar and Nanjundiah (1951), Amos (1974):

I 2
ν (x)− Iν+1(x)Iν−1(x) ≥ 0, x > 0, ν > −1

Essentially equivalent inequality

xI ′ν(x)/Iν(x) <
√

x2 + ν2

appeared in Gronwall (1932) for ν > 0 and later in Phillips and Malin
(1950) for integer ν.

Log-concavity of ν → Iν(x) on (−1,∞) and fixed x > 0 - Baricz (2010)
following the proof of Ismail and Muldoon (1978) for Jν .

Ismail and Muldoon (1978):

Kν+1(x)Kν−1(x)− K 2
ν (x) ≥ 0, x > 0, ν ∈ R

log-convexity of ν → Kν - Baricz (2010).
Dmitry Karp Log-convexity and log-concavity



Some history: Modified Bessel functions

Thiruvenkatachar and Nanjundiah (1951), Amos (1974):

I 2
ν (x)− Iν+1(x)Iν−1(x) ≥ 0, x > 0, ν > −1

Essentially equivalent inequality

xI ′ν(x)/Iν(x) <
√

x2 + ν2

appeared in Gronwall (1932) for ν > 0 and later in Phillips and Malin
(1950) for integer ν.

Log-concavity of ν → Iν(x) on (−1,∞) and fixed x > 0 - Baricz (2010)
following the proof of Ismail and Muldoon (1978) for Jν .

Ismail and Muldoon (1978):

Kν+1(x)Kν−1(x)− K 2
ν (x) ≥ 0, x > 0, ν ∈ R

log-convexity of ν → Kν - Baricz (2010).
Dmitry Karp Log-convexity and log-concavity



Some history: the Kummer function
Alzer (1990) inequality for exponential remainder:

1F1(1; n; x)2 < 1F1(1; n+ν; x)1F1(1; n−ν; x)⇔ Gautschi (1982) inequality

Here n and n − ν are non-negative integers, x > 0.

Sitnik (1993): µ→ 1F1(1;µ; x) is log-convex on([0,∞) and
µ→ 1F1(1;µ; x)/Γ(µ) is discrete log-concave:

1F1(1; n + 1; x)2 >
n

n + 1
1F1(1; n; x)1F1(1; n + 2; x)

Baricz (2008): µ→ 1F1(a; c + µ; x) is log-convex on [0,∞) for
a, c , x > 0 and µ 7→ 1F1(a + µ; c + µ; x) is log-convex on [0,∞) for
a > c > 0, x > 0

Barnard-Gordy-Richards (2009):

[1F1(a; c; x)]2 − 1F1(a + n; c; x)1F1(a− n; c; x) ≥ 0

for all a > 0, c > a ≥ n − 1 and x ∈ R or a ≥ n − 1, c > −1 (c 6= 0),
x > 0, and positive integer n. If fact, they showed that the left hand
side has positive Taylor coefficients.
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Baricz (2008): µ→ 1F1(a; c + µ; x) is log-convex on [0,∞) for
a, c , x > 0 and µ 7→ 1F1(a + µ; c + µ; x) is log-convex on [0,∞) for
a > c > 0, x > 0

Barnard-Gordy-Richards (2009):

[1F1(a; c; x)]2 − 1F1(a + n; c; x)1F1(a− n; c; x) ≥ 0

for all a > 0, c > a ≥ n − 1 and x ∈ R or a ≥ n − 1, c > −1 (c 6= 0),
x > 0, and positive integer n. If fact, they showed that the left hand
side has positive Taylor coefficients.
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Rising factorial series

Theorem 1 (K.-Sitnik, 2009)

Suppose {fn}∞0 is a positive log-concave (log-convex) sequence. Then
the function

a 7→ f (a, x) :=
∞∑

n=0

fn
(a)n

n!
xn

is strictly log-concave (log-convex) on (0,∞) for each fixed x > 0 and,
moreover, given any positive a, b and δ the function

ϕa,b,δ(x) := f (a + δ, x)f (b, x)− f (b + δ, x)f (a, x)

has positive (negative) power series coefficients so that the function
x → ϕa,b,δ(x) (x → −ϕa,b,δ(x)) is absolutely monotonic on (0,∞).
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Corollaries and Conjectures

Corollary 1

Suppose {fk}n0 is a log-concave sequence, α, β > 0. Then the
polynomial

Pα,β
n (x) =

n∑
k=0

fk fn−k

(
n

k

)
[(x + α)k(x + β)n−k − (x + α + β)k(x)n−k ] ,

has no positive roots.

Conjecture 1

All coefficients of the polynomial Pα,β
n (x) are positive.

Conjecture 2

The polynomial Pα,β
n (x) is Hurwitz stable (all its roots have negative

real parts).
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Theorem 2 - gamma function series (K.-Sitnik, 2009)

Suppose {gn}∞0 is a positive sequence. Then the function

a→ g(a, x) :=
∞∑

n=0
gnΓ(a + n)xn

is log-convex on (0,∞). Moreover, given any positive a, b and δ the
function

ψa,b,δ(x) := g(a + δ, x)g(b, x)− g(b + δ, x)g(a, x)

has negative power series coefficients so that x → −ψa,b,δ(x) is
absolutely monotonic on (0,∞).

Corollary 2

Let f (a, x) =
∞∑

n=0
fn(a)nx

n/n! with log-concave sequence {fn}. Then

Γ(a + δ)Γ(b)

Γ(b + δ)Γ(a)
<

f (b + δ, x)f (a, x)

f (a + δ, x)f (b, x)
< 1 for b > a > 0 and x > 0.
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Reciprocal rising factorial series

Theorem 3 (K.-Sitnik, 2009)

Suppose {hn}∞0 is a positive sequence. Then the function

a→ h(a, x) :=
∞∑

n=0

hn

(a)n
xn

is log-convex on (0,∞). Moreover, given any positive a, b and δ the
function

λa,b,δ(x) := h(a + δ, x)h(b, x)− h(b + δ, x)h(a, x)

has negative power series coefficients so that x → −λa,b,δ(x) is
absolutely monotonic on (0,∞).
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Reciprocal gamma function series

Theorem 4 (Kalmykov-K., 2011)

Suppose {qn}∞0 is a positive log-concave sequence. Then the function

a 7→ q(a, x) :=
∞∑

n=0

qnx
n

n!Γ(a + n)
, (3)

is strictly log-concave on (0,∞) for each fixed x > 0 and, moreover,
given any positive a, b and δ the function

ηa,b,δ(x) := q(a + δ, x)q(b + δ, x)− q(a + b + δ, x)q(δ, x)

has positive power series coefficients so that the function x → ηa,b,δ(x)
is absolutely monotonic on (0,∞).
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Series in ratios of rising factorials
Theorem 5 (Kalmykov-K., 2011)

Suppose c > a > 0 and {fn}∞0 is a positive log-concave sequence. Then
the function

µ 7→ f (a + µ, c + µ; x) :=
∞∑

n=0

fn
(a + µ)n

(c + µ)n

xn

n!
,

is strictly discrete Wright log-concave on (0,∞) for each fixed x > 0.
Moreover, given any µ > 0 the function

ϕa,c,µ(x) :=

f (a + 1, c + 1; x)f (a +µ, c +µ; x)− f (a, c; x)f (a +µ+ 1, c +µ+ 1; x)

has positive power series coefficients so that the function x → ϕa,c,µ(x)
is absolutely monotonic on (0,∞). If a > c > 0 and {fn}∞0 is any
positive sequence, then µ 7→ f (a + µ, c + µ; x) is strictly log-convex on
(0,∞) for each fixed x > 0.
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Series in ratios of gamma functions
Theorem 6 (Kalmykov-K., 2011)

Suppose a > c > 0 and {gn}∞0 is a positive log-concave sequence. Then
the function

µ 7→ g(a + µ, c + µ; x) :=
∞∑

n=0

gn
Γ(a + µ+ n)

Γ(c + µ+ n)

xn

n!
,

is strictly discrete Wright log-concave on (0,∞) for each fixed x > 0.
Moreover, given any µ > 0 the function

ψa,c,µ(x) :=

g(a+ 1, c + 1; x)g(a+µ, c +µ; x)−g(a, c ; x)g(a+µ+ 1, c +µ+ 1; x)

has positive power series coefficients so that the function x → ψa,c,µ(x)
is absolutely monotonic on (0,∞). If c > a > 0 and {gn}∞0 is any
positive sequence, then µ 7→ g(a + µ, c + µ; x) is strictly log-convex on
(0,∞) for each fixed x > 0.
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Conjecture

Conjecture 3
The word ”discrete” may be removed from Theorems 5 and 6.

Lemma (Kalmykov-K., 2011)

The following identity holds for the Kummer function 1F1:

1F1(a + µ; c + µ; x)1F1(a + 1; c + 1; x)

− 1F1(a + µ+ 1; c + µ+ 1; x)1F1(a; c ; x)

=
(c − a)x

c(c + 1)(c + µ)(c + µ+ 1)
×{

(c + µ)(c + µ+ 1)1F1(a + 1; c + 2; x)1F1(a + µ+ 1; c + µ+ 1; x)

− c(c + 1)1F1(a + 1; c + 1; x)1F1(a + µ+ 1; c + µ+ 2; x)

}
.
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Application to generalized hypergeometric function

Let em(c1, . . . , cq) denote m-th elementary symmetric polynomial,

em(c1, . . . , cq) =
∑

1≤i1<i2<···<im≤q

ci1ci2 · · · cim

Lemma (Heikkala, Vamanamurthy, Vuorinen, 2009), (K.-Sitnik, 2009)

Suppose ai , bi > 0, i = 1, . . . , q. The sequence of hypergeometric terms

fn =
(a1)n · · · (aq)n

(b1)n · · · (bq)n
is log-concave if

eq(b1, . . . , bq)

eq(a1, . . . , aq)
≤ eq−1(b1, . . . , bq)

eq−1(a1, . . . , aq)
≤ · · · ≤ e1(b1, . . . , bq)

e1(a1, . . . , aq)
≤ 1. (4)

and log-convex if

eq(b1, . . . , bq)

eq(a1, . . . , aq)
≥ eq−1(b1, . . . , bq)

eq−1(a1, . . . , aq)
≥ · · · ≥ e1(b1, . . . , bq)

e1(a1, . . . , aq)
≥ 1. (5)
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Some hypergeometric examples

For a > b > 0, c > 0 and integer m ≥ 2

4F3

(
−m, a, 1− c −m, 1− am/(a + b)

c , 1− b −m,−am/(a + b)

∣∣∣∣− 1

)
> 0,

and for b > a > 0 the sign of inequality is reversed;
The function α 7→ 2F1(α, b; c ; x) is log-concave, on (0,∞) if
0 < x < 1, b > c > 0 or x < 0, c > 0 > b and on (−∞, c] if
0 < x < 1, c > 0 > b or x < 0, b > c > 0;
The function α 7→ 3F2 (α, a1, a2; b1, b2; x), 0 < x < 1 is
log-concave on (0,∞) if

b1b2

a1a2
≤ b1 + b2

a1 + a2
≤ 1;

The function α 7→ 2F2(α, a1; b1, b2; x), 0 < x <∞, is log-concave
on (0,∞) if a1 ≥ b1b2/(b1 + b2);
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An application: directional statistics

Probability density function of multivariate Watson distribution:

ρ(±x;µµµ, κ) =
Γ(d/2)

2πd/2
1F1(1/2; d/2;κ)

eκ(µµµ,x)
2
.

The distribution is defined in projective hyperplane Pd−1 = sphere Sd−1

with opposite points identified. µµµ and x are unit vectors in Rd .

Maximum likelihood estimation for Watson distributions leads to a
particular case of the equation

g(a, c , x) :=
1F1
′(a, c ; x)

1F1(a, c ; x)
= r , r ∈ (0, 1), c > a > 0. (6)

Theorem: uniqueness of solution (K.-Sra, 2010)

Let c > a > 0. Then g(a, c, x) is monotone decreasing on R mapping it
onto (0, 1), so that for each r ∈ (0, 1) the solution of (6) exists and is
unique.
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Introduce the notation:

L(r) =
rc − a

r(1− r)

(
1 +

1− r

c − a

)
,

B(r) =
rc − a

2r(1− r)

(
1 +

√
1 +

4(c + 1)r(1− r)

a(c − a)

)
,

U(r) =
rc − a

r(1− r)

(
1 +

r

a

)
.

Theorem: two-sided bounds (K.-Sra, 2010)

For a/c < r < 1 we have

L(r) < x(r) < B(r) < U(r). (7)

For 0 < r < a/c we have

L(r) < B(r) < x(r) < U(r). (8)

If r = a/c we have x = L(a/c) = B(a/c) = U(a/c) = 0. All three
bounds are also asymptotically precise at r = 0 and r = 1.

lim
r→0,1

L(r)

x(r)
= lim

r→0,1

B(r)

x(r)
= lim

r→0,1

U(r)

x(r)
= 1
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Curious open problems

Turán (1946) inequality for Legendre polynomials:

2F1(−µ, 1+µ; 1; y)2 > 2F1(−µ−δ, 1+µ+δ; 1; y)2F1(−µ+δ, 1+µ−δ; 1; y), 0 < y < 1,

for y ∈ (0, 1), µ = 1, 2, . . . and δ = 1.

Conjecture 4
Turán inequality is true for all µ > 0 and 0 < δ < 1.

Prékopa-Ninh while studying some convex optimization problems
conjectured that[

(1 + k)2F2

(
k/2 + 1, k/2 + 3/2

3/2, 2

∣∣∣∣ x)]2

≥

k2F2

(
k/2 + 1/2, k/2 + 1

3/2, 2

∣∣∣∣ x) (k +2)2F2

(
k/2 + 2, k/2 + 3/2

3/2, 2

∣∣∣∣ x)
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THANK YOU FOR ATTENTION!
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